Wi-Fi Signal Indoor LOS Coverage modeling using ANFIS

Omae M. O, Ndungu E. N and Kibet P. L.

Abstract—Wireless local area networks (WLANS) are becoming very important in our daily communications applications. This has necessitated their study to improve on the quality of service (QoS). Different methods have been used in signal modeling. This study is aimed at predicting Wi-Fi signal propagation along a corridor using Adaptive Neural Fuzzy Inference System (ANFIS). The root mean square and standard deviation of the predicted signal were determined. The study was undertaken using a Wi-Fi router as the transmitter and a mobile phone as the receiver. The measured values were then used in ANFIS modeling. It was found that the predicted values were close to actual measured values.

Keywords: Wi-Fi, QoS, WLANS, ANFIS

I. INTRODUCTION

Wi-Fi networks form one of the largest market segments of wireless networks. Coverage in line of sight (LOS) environments is limited both by physical obstacles and structural barriers, while in built environments, the main obstacles are walls [1]. What is common for both is interference in the wireless spectrum. The most commonly used ISM bands for Wi-Fi networks are at 2.4 GHz and 5 GHz, and the signals at such high frequencies do not easily pass through the obstacles. To increase connectivity and extend coverage, Wi-Fi networks use limited transmission powers, typically up to 100 mW. This gives connectivity of a few tens of meters, even through walls. At the same time, line-of-sight connectivity may reach significantly greater distances, causing far away nodes to interfere in very unusual patterns.

ANFIS is one of the most current techniques used in function approximation besides other very many applications like classification. The technique is obtained by combining the Neural Networks and Fuzzy Logic concepts which are based on numerical analysis and natural language respectively. This study investigated the prediction of signal coverage of Wi-Fi networks using ANFIS.

A. Statement of the problem

Wireless telecommunication technologies are currently becoming a very important concept in our lives. Scientists have done various studies in regard to this technology and continue to do the same to ensure quality of service (QoS) to the ever growing number of users. In view of this the idea of also adding to the progressing research in this field led to the study of prediction of Wi-Fi signal using ANFIS which is commonly used in approximating functions because of its advantages that include high accuracy and better computational efficiency.

B. Research objectives

Main objective;
To predict Wi-Fi signal coverage using ANFIS.

Specific objectives
1. Measure signal strength with variation of distance along a corridor.
2. Use ANFIS to model the measured signal.

II. LITERATURE REVIEW

A. Introduction

Wireless networking works by sending radio transmissions on specific frequencies where listening devices can receive them. The necessary radio transmitters and receivers are built into Wi-Fi enabled equipment like routers, laptops and phones. Antennas are also key components of these radio communication systems, picking up incoming signals or radiating outgoing Wi-Fi signals. Some Wi-Fi antennas, particularly on routers, may be mounted externally while others are embedded inside the device's hardware enclosure [2].

ANFIS combines the advantages of both neural network and fuzzy logic in its operation resulting to a powerful tool in approximating functions [3].

B. Effect of distance

Signal attenuation over distance is observed when the mean received signal power is attenuated as a function of the distance from the transmitter. The most common form of this is often called free space loss and is due to the signal power being spread out over the surface area of an increasing sphere as the receiver moves farther from the transmitter. In addition to free space loss effects, the signal experiences decay due to ground wave loss although this typically only comes into play for very large distances (on the order of kilometers).

C. Multipath Propagation

Multipath results from the fact that the propagation channel consists of several obstacles and reflectors. Thus, the received signal arrives as an unpredictable set of reflections and/or direct waves each with its own degree of attenuation and delay. The delay spread is a parameter commonly used to quantify multipath effects. Multipath leads to variations in the received signal strength over frequency and antenna location.

Omae M. O, Ndungu E. N, Kibet P. L. School of Electrical, Electronic and Information Engineering, Department of Telecommunication & Information Engineering, JKUAT (phone: +2540722805012; +2540721366349, +2540724833749 fax: +25467527111; e-mail: m_oteri@yahoo.com, ndunguen@yahoo.com, kibetlp@yahoo.com).
D. Rate of fading

Time variation of the channel occurs if the communicating device (antenna) and components of its environment are in motion. Closely related to Doppler shifting, time variation in conjunction with multipath transmission leads to variation of the instantaneous received signal strength about the mean power level as the receiver moves over distances on the order of less than a single carrier wavelength. The degree of time variation in an outdoor system is much more than that of an indoor system. One manifestation of time variation is as spreading in the frequency domain (Doppler spreading). The frequency in our case varied from 2412 to 2467 MHz.

E. Free space path loss

Free space path loss (FSPL) is the loss in signal strength that occurs when an electromagnetic wave travels over a line of sight (LOS) path in free space. In such a circumstance, there are no obstacles that might cause the signal to be reflected, refracted or that might cause additional attenuation. [4]

When calculating thus, factors relating to the transmitter power, antenna gains or the receiver sensitivity levels are not considered and only the loss along the path itself is considered. As a signal moves away from the transmitter, it keeps spreading out in the form of a sphere increasing the sphere's surface area with increase in distance thus, the intensity of the signal decreases. It can be deduced that the signal decreases in spreading out in the form of a sphere increasing the sphere's surface area with increase in distance thus, the intensity of the signal decreases. It can be deduced that the signal decreases in spreading out in the form of a sphere increasing the sphere's surface area with increase in distance thus, the intensity of the signal decreases.

Free space path loss equation and manipulate into a form that can be expressed in a logarithmic format. Most RF comparisons and measurements are performed in decibels. This gives an easy and consistent method to compare the signal levels present at various points. Accordingly it is very convenient to express the free space path loss formula, FSPL, in terms of decibels. It is easy to take the basic free space path loss equation and manipulate into a form that can be expressed in a logarithmic format.

Free space losses (FSL) is given by:-

\[FSL = 32.44 + 20 \log d + 20 \log f \]

Where:

- \(d \) = distance between the source and destination in km
- \(f \) = frequency

In this work, the apparatus used have the following specifications:

Mobile Phone Receiver

Tecno R7 with G(r) as +4dB was used.

D-Link DIR 605L router (Transmitter)

\[P(t) = +15 \text{dBm}; \ G(t) = +4 \text{dBi} \]

Therefore, \[P(D-Link) = 15 + 4 + 4 = +23 \text{dB} \].

The fundamental design of and plan of indoor wireless network depends on the measurement and analysis of the Wi-Fi signal. Distance is one of the major contributors of the attenuation of the radio signal propagation known as the path loss [6]. The signal received by the user reduces in power with the distance it traverses following an inverse square law. For an ideal condition the power of the signal is given by

\[P_R = P_t \text{db} + G_t \text{db} + G_R \text{db} - \text{FSL db} \]

Where \(P_R \) is the power transmitted

- \(P_t \) is power of the router
- \(G_t \) is the gain of the router
- \(G_R \) is the antennae gain for the mobile device/laptop

FSL is given by 32.44 + 20logd + 20logf where \(d \) is the distance in km and \(f \) is the frequency in MHz [7].

F. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Adaptive Neuro-Fuzzy Inference System (ANFIS) otherwise referred to as Adaptive Network-based Fuzzy inference System was proposed in [7]. ANFIS is a blend of Fuzzy Logic (FL) and Artificial Neural Network (ANN) that captures the strengths and offsets the limitations of both techniques for building inference systems (IS) with improved results and enhanced intelligence. Fuzzy logic is associated with the theory of fuzzy set, which relates to classes of objects with rough boundaries in which membership is a matter of degree.

It is an extensive multivalued logical system that deparls in concept and substance from the traditional multivalued logical systems. Much of fuzzy logic may be viewed as a platform for computing with words rather than numbers. The use of words for computing is closer to human intuition and exploits the tolerance for imprecision, thereby lowering the cost of the solution [8]. However, there are no known appropriate or well-established methods of defining rules and membership functions based on human knowledge and experience. Artificial Neural Networks are made up of simple processing elements operating concurrently. These elements model the biological nervous system, with the network functions predominantly determined by the connections between the elements. Neural Networks have the ability to learn from data by adjusting the values of the connections (weights) between the elements. Merging these two artificial intelligence paradigms together offers the learning power of neural networks and the knowledge representation of fuzzy logic for making inferences from observations.

G. Basic ANFIS Architecture

The ANFIS architecture described here is based on type 3 fuzzy inference system (other popular types are the type 1 and type 2). In the type 3 inference system, the Takagi and
Sugeno's (TKS) if-then rules are used [3]. The output of each rule is obtained by adding a constant term to the linear combination of the input variables. Final output is then computed by taking the weighted average of each rule's output. The type 3 ANFIS architecture with two inputs (x and y) and one output, z, is shown in Fig. 1.

Layer 3 (Normalized Layer): This layer consists of fixed nodes that are used to compute the ratio of the ith rule’s firing strength to the total of all firing strengths:

$$\bar{w}_i = \frac{w_i}{w_{i1} + w_{i2}}, \quad i = 1, 2,$$

(6)

The outputs of this layer are otherwise known as normalized firing strength for convenience.

Layer 4 (Defuzzify Layer): This is an adaptive layer with a node function given by:

$$\frac{w_i x_i + q_i y + r_i}{\sum_i w_i x_i + q_i y + r_i}$$

(7)

This layer essentially computes the contribution of each rule to the overall output. It is defuzzification layer and provides output values resulting from the inference of rules. The parameters in this layer \(p_i, q_i, r_i\) are known as consequent parameters.

Layer 5 (Total Output Layer): There is only one fixed node in this layer. It computes the overall output as the summation of contribution from each rule:

$$\sum_i \bar{w}_i z_i = O_5 = \bar{w}_i z_i$$

(8)

H. Evaluation Criteria

The performance of the proposed approach will be evaluated by measuring the estimation accuracy. The estimation accuracy can be defined as the difference between the actual and estimated values. The first typical fitting criterion (MSE) is defined as in Equation 9:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (P_{measured} - P_{predicted})^2$$

(9)

Where N is the total number of data, \(P_{measured}\) is actual target value, and \(P_{predicted}\) its estimated target value.

The experiments are implemented many times to ensure that MSE converges to a minimum value. The training accuracy is expressed in terms of the mean absolute error, standard deviation (SD) and root mean squared error (RMSE). The absolute mean error (ME) is expressed as

$$e_i = |P_{measured} - P_{predicted}|, \quad \bar{e} = \frac{1}{N} \sum_{i=1}^{N} e_i,$$

(10)

where terms measured and predicted denote received signal strength that are obtained by measurement and predicted by ANFIS, while \(N\) is total number of samples. Standard deviation is given by

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (e_i - \bar{e})^2}$$

(11)

The root mean squared error (RMSE) is calculated according to the expression.
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (P_{measured} - P_{predicted})^2} \quad (12)

III. RESEARCH METHODOLOGY

A. Practical Measurement of \(P_R \)

The steps for carrying out the experiment are as follows:

i. A tape measure was used to measure a distance of 42m that was subdivided into 42 points each 1m apart.

ii. The Tecno R7 mobile device was moved metre by metre away for the D-link router and took the readings for every 1m from the router in Table 1.

B. Data analysis

For this study, the content analysis technique was employed to analyze the data. Matlab graphical representation techniques were used to analyze quantitative data. The full analysis on the key findings of this study is presented in section below.

IV. FINDINGS AND DISCUSSIONS

A. Results

For the LOS case, the results were as shown in the table below;

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>(P_R) Value (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-38</td>
</tr>
<tr>
<td>2</td>
<td>-42</td>
</tr>
<tr>
<td>3</td>
<td>-47</td>
</tr>
<tr>
<td>4</td>
<td>-44</td>
</tr>
<tr>
<td>5</td>
<td>-48</td>
</tr>
<tr>
<td>6</td>
<td>-52</td>
</tr>
<tr>
<td>7</td>
<td>-51</td>
</tr>
<tr>
<td>8</td>
<td>-48</td>
</tr>
<tr>
<td>9</td>
<td>-53</td>
</tr>
<tr>
<td>10</td>
<td>-49</td>
</tr>
<tr>
<td>11</td>
<td>-58</td>
</tr>
<tr>
<td>12</td>
<td>-53</td>
</tr>
<tr>
<td>13</td>
<td>-57</td>
</tr>
<tr>
<td>14</td>
<td>-54</td>
</tr>
<tr>
<td>15</td>
<td>-49</td>
</tr>
<tr>
<td>16</td>
<td>-54</td>
</tr>
<tr>
<td>17</td>
<td>-53</td>
</tr>
<tr>
<td>18</td>
<td>-53</td>
</tr>
<tr>
<td>19</td>
<td>-55</td>
</tr>
<tr>
<td>20</td>
<td>-54</td>
</tr>
<tr>
<td>21</td>
<td>-62</td>
</tr>
<tr>
<td>22</td>
<td>-55</td>
</tr>
<tr>
<td>23</td>
<td>-56</td>
</tr>
<tr>
<td>24</td>
<td>-54</td>
</tr>
<tr>
<td>25</td>
<td>-52</td>
</tr>
<tr>
<td>26</td>
<td>-55</td>
</tr>
<tr>
<td>27</td>
<td>-56</td>
</tr>
<tr>
<td>28</td>
<td>-52</td>
</tr>
<tr>
<td>29</td>
<td>-55</td>
</tr>
<tr>
<td>30</td>
<td>-56</td>
</tr>
<tr>
<td>31</td>
<td>-57</td>
</tr>
<tr>
<td>32</td>
<td>-58</td>
</tr>
<tr>
<td>33</td>
<td>-53</td>
</tr>
<tr>
<td>34</td>
<td>-48</td>
</tr>
<tr>
<td>35</td>
<td>-51</td>
</tr>
<tr>
<td>36</td>
<td>-50</td>
</tr>
<tr>
<td>37</td>
<td>-51</td>
</tr>
<tr>
<td>38</td>
<td>-53</td>
</tr>
<tr>
<td>39</td>
<td>-52</td>
</tr>
<tr>
<td>40</td>
<td>-54</td>
</tr>
<tr>
<td>41</td>
<td>-54</td>
</tr>
<tr>
<td>42</td>
<td>-52</td>
</tr>
</tbody>
</table>

Based on the measurement Matlab analysis, the following graphs were generated.
The graphs generated using the values obtained during the experiment and predicted are as shown above. The signal strength reduces gradually as expected due to the increase in distance between the transmitter and the receiver. For LOS propagation the time graphs show a variation in signal strength. This is due to variations in the channel conditions. The channel's transfer characteristics may vary due to movements of the transmitter, receiver or people in the indoor environment. The transmitted signal may reach the receiver through multiple reflected paths. These reflected signals may add up to strengthen each other or they may add up to cancel each other. Also, presence of objects in the path between the transmitter and the receiver also reduces the signal power arriving at the receiver. All this manifest themselves in the fluctuations in the power levels of different received signals. This manifests in the first graph which has variations from the first to the last points.

Fig. 6 is the predicted signal using ANFIS prediction tool. The variation is smooth trying to follow the actual measured values. The different parameters obtained by comparing the measured and predicted values for the third plot are given as: The absolute mean error (ME) was obtained as 1.7574, root mean squared error (RMSE) as 2.4266 and standard deviation (SD) as 1.6936.

V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusion

From experiment and calculations performed as a result thereof, it can be stated that the power of a signal transmitted in free space decreases with increase in distance from the source for both predicted and measured values. The values obtained above indicate the closeness of predicted to the measured values.

B. Limitations of the study

The major limitation of the study was random behavior of the received signal.

C. Areas of further study

Future research should include the use different training methods to compare the resulting parameters with those obtained under the default training methods.

REFERENCES