
  
Abstract— Orientation tracking of a quadcopter Unmanned Aerial 

Vehicle (UAV) involves monitoring the Roll, Pitch and Yaw angles. 
These angles provide feedback information that is then used to give 
appropriate angling and heading orientation. Measurements of these 
Euler angles is accomplished by use of an Inertial Measurement Unit 
(IMU) consisting of either a gyroscope, accelerometer or both. The 
IMU created with the gyroscope is less sensitive to vibrations and is 
not affected by earth’s gravity. One of the problems that a gyro based 
IMU encounters is the drifting of the angles. Another problem occurs 
when the IMU is started at an angled surface. This is because the IMU 
has no reference to what is level. In static or slow movement, the 
accelerometer measures roll and pitch by leveling to correct the gyro-
unbounded error. This is due to the trustworthiness of the gravitational 
measurement. While the accelerometer gives absolute measurement of 
the quadcopter attitude, the motors on the quadcopter produce a lot of 
vibrations introducing significant noise into the accelerometer reading. 
Therefore, a proper fusion of IMU data is needed to overcome the 
shortcomings of each sensor. Kalman filter is therefore proposed to 
merge the two sensor measurements to achieve better estimates, 
redundancy and drift compensation. In conclusion, the performance of 
the Kalman filter is then compared with that of the unfiltered sensor 
data and Complimentary filter. 

Keywords— Accelerometer, Complimentary filter, Gyroscope, 
Kalman filter,  
 

I. INTRODUCTION 
quadrotor is a helicopter lifted and propelled by four 
rotors. Small sized quadrotors are often used as Unmanned 

Aerial Vehicles (UAVs) in research and amateur projects, 
because of the simple symmetric structure and relatively easy 
control law with respect to traditional helicopters.  

Quadrotors have a set of sensors that provide the information 
needed by the attitude, altitude and the navigation control 
systems. This set of sensors is usually called an Inertial 
Measurement Unit (IMU). The IMU of a quadrotor contains the 
following sensors:  an accelerometer, a gyroscope, a 
magnetometer and a barometer. During flight, the motors in the 
quadrotor introduces noise into the data read from the sensors. 
This brings divergence from the intended orientation and 
trajectory.  

Filtering involves seeking for the best values of the system 
states via new measurements and updating of the new 
measurements [1]. Kalman filter has become popular and is 
used in almost every sensor processing applications. Some 
extensions of Kalman filter are adaptive Kalman filtering [2], 
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unscented Kalman filtering [3] ,extended Kalman filtering [4].  
The most and widely used filtering techniques are based on 
extended Kalman filter [5], [6]. Some other techniques have 
also been developed like the nonlinear observer given in [7], or 
based on unscented filter [8]. Most of these methods are 
computationally demanding. Estimation of Quadrotor attitude 
using Extended Kalman Filter (EKF) has been discussed in [9] 
while [10] compares the performance of the quadrotor with both 
the EKF and the Kalman Filter with the conclusion that EKF 
gives the best performance theoretically. However, attitude 
estimation using EKF has been found inapplicable to embedded 
systems. 

The use of Kalman filters to estimate the attitude continues 
to attract many researchers. In [11], Kalman filter is designed 
to estimate the noisy states of the system. However, it is 
computationally demanding and difficult to understand. An 
alternative, the Complementary filters, which are not so 
computationally demanding are used for attitude estimation in 
[12], [13] and its performance is compared with that of Kalman 
filter in [14]. Accelerometer and gyroscope measurements are 
fused using Complimentary filter in [15] to estimate the 
orientation.  

In this scheme, the Kalman filter and complementary filter is 
applied to estimate the attitude states of the quadrotor from the 
noisy measurements of on board Microelectromechanical  
sensors (MEMS). The estimated state is intended to be used by 
a control algorithm (not discussed in this work) to maintain the 
desired attitude during various maneuvers. In conclusion, the 
performance of the Kalman filter is then compared with that of 
the unfiltered sensor data and Complimentary filter. 

 

II. MICROELECTROMECHANICAL SENSOR (MEMS) 

A. Accelerometer Model 
 

Accelerometer measures total acceleration relative to free 
fall, also called specific force 𝑓𝑓̅𝑏𝑏 [16] 
However, Accelerometer do not capture the high frequency 
dynamics.  When an accelerometer is part of a moving system 
like UAVs and robots, it not only measures acceleration due to 
gravity but also translational and rotational accelerations. 
Therefore, an ideal accelerometer aligned with the body 
measures specific force as shown in (1). A detailed derivation 
is given in [17]. 
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Where, �̅�𝑔𝑏𝑏is gravity in body coordinates, ∅ and 𝜃𝜃  represent 

roll and pitch in radian respectively. 
 

B. Gyroscope model 
Gyro sensors measure angular velocity in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 directions 

although its measurements include biases. It is modeled as 
follows: 
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Where, 𝑏𝑏Ω and 𝑛𝑛Ω represent the gyro bias and the associated 
noise respectively. Gyro measurement and Euler angle rate are 
related as shown [17]: 
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Where, ∅ and 𝜃𝜃  represent roll and pitch in radian 

respectively and Ω is the propeller angular velocity. 
 
Errors accumulate with time due to gyro bias making it 

practically impossible to rely on gyro data alone for Euler angle 
estimation. Hence, accelerometers are used to compensate for 
the gyro’s drifts in pitch and roll estimation. (Yaw estimation is 
not covered in this work). 
 

III. MATHEMATICAL FORMULATION OF KALMAN FILTER 
Kalman filter is a recursive filter that estimates the states of 

the dynamics of a system by noisy measurement. 
 

 
Fig. 1 Kalman model 

 
The Kalman filter is based on a two-step process: First, the 

system acts as a Predictor; i.e. it uses the model of the system, 
the current state and the input vector to predict the future state 
considering the covariance error. In application, the filter takes 
the gyroscope measurements and calculates attitude estimations 
based on the gyroscope rates, and makes a prediction estimate 
of the error covariance. 

The Measurement update phase, which is the second phase, 
corrects the predicted state and the estimated covariance error 
according to the measurements and its noise covariance. These 
are then used to calculate the Kalman gain. The accelerometer 
data is incorporated to aid the gyroscope measurement. These 
two values are multiplied by the Kalman gain to use a 
percentage of each measurement based on their noise 
characteristics. 

Therefore, a model for the prediction of the angular velocity 
(without the model noise) is given by [18]: 
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Where k

•

θ  is the angular velocity, 𝑘𝑘 is a constant for the 
linear relationship between the force generated by the motor 
and the input, 𝑗𝑗 is the inertia and 𝑢𝑢 is the input to the motors. To 
make (4) complete, the model noise 𝑤𝑤𝑘𝑘~ 𝑁𝑁(0,𝑄𝑄)is introduced 
to take model errors into consideration. 𝑄𝑄 is the covariance 
matrix of the noise given. The predicted state is then updated 
according to the steps described in [18]. 

 

IV. COMPLIMENTARY FILTER 
 

When measuring the body angle with the accelerometer, it is 
affected by translation and vibrations of the motors, but the 
errors are not accumulated. When measuring with the gyro 
sensor, the errors are accumulated, but vibrations do not affect 
its operation. These two sensors measure the same physical 
quantities, and the properties are complementary, so the 
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weaknesses of each sensor can be supplemented through 
convergence. 

Generally, all the forces working on the object are measured 
by accelerometer and as the small forces creates disturbance in 
measurement, long-term measurement is reliable. So for 
accelerometer low pass filter is needed for correction. In the 
gyroscopic sensor the integration is done over a period of time 
and the value starts to drift in the long term, so high pass filter 
is needed for gyroscopic data correction[19], [20]. Therefore, 
the complementary filter consists of both low and high pass 
filter as shown in Fig. 2. 

 

 
Fig. 2 Complimentary filter block diagram 

 
The complimentary filter is a unity filter i.e. 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛1(𝑠𝑠) +

𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛2(𝑠𝑠) = 1 and is based on time constant to produce desired 
gains [21] 
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𝜏𝜏  is calculated from examining the gyroscope drift rate. 
 
The complimentary filter angle is therefore calculated by 

summing weighted portions of the gyroscope and accelerometer 
angles to create a more accurate combined attitude angle. 
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V. IMPLEMENTATION 
In this scheme, a 6-degree of freedom (6-DOF) MEMS 

sensor MPU-6050 has been used. It combines a 3-axis 
gyroscope, 3-axis accelerometer, and a Digital Motion 
Processor™ (DMP) all in a small 4x4x0.9mm package. 

The fusion algorithms were implemented in Arduino plat-
form.  

The test was performed as follows: 
- First the IMU GY-521breakoutboard was tilted smoothly. 
- Next, the board was then continually tilted with some 

vibrations, i.e. by tapping and shaking the board quickly 
The data was received on the Arduino Uno serial monitor.  A 

program was written on the Arduino environment to prompt for 
inputs from the IMU sensor. The received inputs are then 
processed using the Kalman and Complimentary libraries. 

Then from the data, their performance was analyzed using 
Matlab. 

 

VI. SIMULATION RESULTS 

 
Fig. 3 Pitch angle estimation using Kalman Filter, 
Complimentary filter and MEMs sensors raw data 

 

 
Fig. 4 Raw angle estimation using Kalman Filter, 
Complimentary filter and MEMs sensors raw data 

 
From the Figs. 3 and 4, gyro data is represented by the purple 

line, Accelerometer by the blue line, the yellow line is the 
filtered data by Kalman filter and the red line is the 
complimentary filtered data. The filtered signal was obtained 
by combining the Accelerometer and Gyroscope data using the 
two fusion algorithms. 

The purple line clearly shows how the gyro data drifts slowly 
with time from the zero level while the blue line shows the 
effect of vibrations (shaking) on the accelerometer data. The 
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gyro data is however not affected by vibrations while the 
accelerometer data has no bias. 

It can be observed that even with much vibration, the Kalman 
and Complimentary Filtered data is not much affected and the 
noise pronounced in the MEMs sensor raw data is eliminated 
with these two filters. 

 

VII. CONCLUSION 
 
From the results, the Kalman filter is more precise than the 

Complementary Filter, especially during vibrations. The 
Kalman filter is however mathematically involving and difficult 
to understand as compared to the complimentary filter which is 
easy to implement. Future work would involve application of 
Extended Kalman filter to perform the fusion of the two sensor 
signals and compare its performance with that of linear Kalman 
Filter studied in this work and to implement these Filter 
attributes in a physical Quadcopter system. 
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