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Abstract—For multiple unmanned Aerial Vehicles to 

collaborate in execution of a mission, a design of the mission, tasks 

and way points is first developed. Core to the design is determination 

of proper architecture and practical algorithms for the whole system. 

The architecture helps in integration of sensing, control, 

communication and planning while the algorithms are necessary for 

information sharing, task assignment and conflict resolution. In this 

paper a review of the principles of cooperative architectures and 

algorithm is presented. It hopes to extrapolate their importance in 

design hence provide essential knowledge to designers with interests 

in multiple vehicle cooperative control. 

Keywords— Control Algorithms, Cooperative control 

architectures, Multi Vehicle Cooperative control.  

I. INTRODUCTION 

PPLICATIONS of Unmanned Aerial Vehicles (UAVs)

in military and civilian applications are on the rise in 

recent years. Such applications include exploration and 

mapping, search and rescue, reconnaissance, surveying, 

detection and monitoring in dangerous scenarios [1]. 

Deployment of collaborating Multiple UAVs is inevitable in 

most of these applications mainly because a team of 

cooperating UAVs offers the following advantages over 

single UAV [2]. First, it is possible to execute multiple 

simultaneous observations collect information from disparate 

points unlike when single UAV is deployed. Then efficiency 

is greatly improved by use of multiple UAVs in that tasks are 

executed faster. Furthermore, reliability and robustness are 

improved since members of the UAV team can complement 

each other making the entire system fault tolerant [3]. 

Control of multiple UAVs however is a has challenges, 

mainly to derive desirable collective behaviors through the 

design of individual agent control algorithms [4]. This has 

triggered research leading to the development of various 

architectures and algorithms for information sharing and task 

assignment.  

II. MULTI-VEHICLE COOPERATION ARCHITECTURES

Cooperation is defined as a joint collaborative behavior 

that is directed toward some goal in which there is a common 

interest or reward [1, 5]. UAV cooperation requires the 

integration of sensing, control, and planning in an 

appropriated decisional architecture. According to wenjing, 

there are three cooperation architectures applied to multi-

UAV research [6]. Multi-agent based architecture, work-flow 

based architecture and control-station based cooperation 

architecture.  
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A. Multi-agent Based Cooperation Architecture 

This has been widely studied in the works of [7, 8] and by 

Maza [2] in which they classified various multi-agent 

cooperation systems based on the coupling as: Physical 

coupling, Formations, Swarms and Intentional cooperation. 

i. Physical Coupling

Here UAVs are physically connected to each other hence 

their motions are constrained by forces that depend on the 

motion of other UAVs. This approach is mainly applied in 

transport problem as in the works of Bernard et-al [9, 10]. As 

shown in Fig 1 where a leader-follower structure is adapted 

for coordination. 

Fig 1: Load Transport with four Quadrotors 

ii. Formations

Here each member of the team must keep user-defined 

distances with other members. Member ‘s motions are 

strongly constrained to keep the formation. This structure has 

been widely researched in the recent years and UAV aerial 

shapes as shown in Fig 2 have been achieved.  

Fig 2: UAV Shape formation 

For example, in research done by Turpin et al [12] 

formations strategies were developed for a team of quad-

rotors following a group trajectory. The UAVs could 

maintain a shape or transform from one shape to another. In 

the works of Han et-al [13], Multiple UAV formations were 

applied for cooperative source seeking and contour mapping 

of a radiative signal field where they analyzed different 

scenarios for formation. Further research in formation has 

been done by Zhao et-al [14], where collision avoidance 

strategies were developed for multiple vehicles in a 

formation. 
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iii. Swarms 

According to Maza et al [15], swarms are defined as teams of 

many vehicles in which interactions generate emerging 

collective behaviors. It is a concept derived from biological 

behaviors and typically involves a large number of 

homogeneous individuals [16]. Characteristics of a group of 

animals are imitated in coordination of a group of robots 

without a central supervisor, by using only local interactions 

between the robots as shown in Fig 3 

 
Fig 3: UAV Swarm 

This has motivated development of multi-agent robotics and 

intelligent swarms like in the research by Vincent et al [17], 

where a framework was developed for a cooperative strategy 

for multiple agents searching for moving and evading targets. 

This was further researched by Altshuler et al [16] in analysis 

of Cooperative Hunters Problem where a swarm of UAVs 

were utilized for searching and intercepting a set of evading 

targets. Further applications of UAV swarms are in the works 

in references [18, 19, 20]. 

iv. Intentional Cooperation 

In intentional cooperation, the UAVs of a team move in 

trajectories defined by individual tasks that should be 

allocated to perform a global mission [11]. Each UAV 

executes a set of tasks explicitly allocated to perform a given 

mission. the concept of intentional cooperation is illustrated 

in Fig 4. Each UAV executes its own path for 

accomplishment of the group objective while avoiding 

conflicts with other UAVs in the group. 

 
Fig 4: Intentional cooperation 

This has been researched widely in works of Parker et al [21], 

Viguria et al [22] and Jian et al [8]. In design of this 

architecture, the main issues are task allocation, motion 

coordination and collision avoidance. Addressing these are 

emerging algorithms such as ant colony algorithm [23, 24] 

and others as documented in the works of Goerzen et al [25]. 

B. Other Recent Architectures 

i. Hierarchical architecture 

Owing to general weaknesses of the above multi-agent 

based cooperation architecture such as long time negotiation 

and reaction delays, recent research has proposed a 

hierarchical model of UAV coordination. developed by 

Pawel and Wojciech, [1] the framework is based on human 

organization where there is workers and superiors. The 

worker UAVs perform mission specific tasks such as image 

acquisition, while the superior UAVs are (watching over) 

supervising the function of multiple workers. This framework 

is illustrated in the Fig 5.  Each level has its functions defined 

as follows, level A UAV coordinates all members of the team, 

 
Fig 5: Hierarchical Model 

level B UAV coordinates level C members in a small team 

and also communicates with level A. Unlike in swarms, in 

this model level C members cannot directly communicate 

with each other. 

ii. Work-flow Based Architecture 

This architecture has been recently proposed by Wenjin 

etal [26], where all UAVs execute tasks synchronously 

according to the same work flow [6]. Each UAV commands 

the related devices to execute tasks with the decision outputs 

as inputs.  Therefore, because of the identical decision inputs 

and the same decision event, decision outputs of each UAV 

are same. It eliminates the need for negotiation on decision 

output and improves on practical time of response. 

iii. Control-station Based Cooperation Architecture 

With this architecture, UAVs perceive the environment, 

then transmit these data to the control station [6]. It has been 

researched previously by Jian et al [27] and applied in fire 

control by Cao et al [28]. The control station makes 

cooperative decision but UAVs make no decisions on their 

own. 

III. MULTI-VEHICLE COOPERATION ALGORITHMS 

The principles behind operation of Cooperation algorithms is 

mainly dependent on the tasks being carried out by the team. 

For multiple air vehicles to collaborate, issues regarding 

information sharing, task assignment and conflict resolution 

are key. 

A. Information Sharing 

Shared information is a necessary condition for 

cooperation therefore information exchange among UAVs is 

central in their collaboration. A thorough understanding of 

information flow and sharing among multiple vehicles in a 

group is key in design of collaborative UAV systems [29]. 

First, the design should define the information to be 

communicated then decide on how to manage the 

information. This information may be communicated 

between vehicles using a wireless network, or joint 

knowledge might be pre-programmed into the vehicles before 

a mission begins [30]. The information could be about 
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vehicles relative position, team objectives or common control 

algorithms. The algorithms must make vehicles to come to an 

agreement commonly referred in literature as consensus. 

Information sharing topologies manages the exchange of 

local and global information among vehicles in a team [31]. 

The operations of team communication topology have been 

widely studied and can be represented by a directed graph 

[32, 33]. Directed graph is an approach of analyzing 

switching topologies by use algebraic graph theory, which 

associates each graph topology with an algebraic structure of 

corresponding matrices [29]. In these graphs, the agents are 

the nodes of the graph and an edge between two nodes 

represents an ability to communicate [34]. In a dynamic 

network, all nodes move and the distances between them vary 

with time. Such multi-agent system corresponds to a time-

varying information exchange topology, and the related graph 

involves fixed number of nodes. In a decentralized network 

of multiple agents, the group performance and task 

accomplishment depend on agents information sharing ability 

to their neighbors. The algebraic connectivity, is a measure of 

connectivity and plays vital role in group dynamics as it 

determines how well the agents can communicate to each 

other. Team communication topologies for small teams can 

be demonstrated by considering a team of three members 

shown in Fig 6. The team members can communicate either 

as in (a) with a weak connection or (b) where member 1 and 

2 have weak connection but member 2 and 3 have strong 

connection. All of them can be strongly connected as shown 

in (c). 

 
Fig 6: Different communication topologies for three vehicles 

Information sharing is applied in cases of pattern formation 

where local information is shared between neighbors to 

maintain prescribed distances. In task assignment, global 

information helps in confirmation of overall mission. 

B. Role Sharing 

Another key issue in multiple vehicle collaboration is 

sharing of roles. Each member of a team has a role in the 

entire mission. The role needs to be assigned in real time, in 

case of a faulty member this information is shared and other 

members take up the role of the faulty member hence most 

cooperative systems are fault tolerant. If a fault happens in 

formation application, an algorithm repositions its neighbors 

to maintain the pattern. In applications where cooperative 

task assignment is needed, an algorithm can reassign the task 

aborted by a faulty member to another member in the team. 

Several algorithms have been proposed for this, are broadly 

classified as either centralized algorithms or distributed 

algorithms [35]. some of the centralized algorithms include 

branch-and-bound procedure, enumeration method and 

dynamic programming. In the works of Chandler, centralized 

control mechanism was used to solve task allocation problem 

in optimization model and proposed solution approaches 

based on utilizing mixed integer linear programming, 

dynamic programming and genetic algorithms [36, 37, 38, 

39]. Recent research has seen development of intelligent 

algorithms, such as genetic algorithm (GA) [40], particle 

swarm optimization (PSO), ant colony optimization (ACO) 

[35], wolf pack algorithm (WPA) and cat swarm 

optimization. Compared to distributed algorithms, the 

performance of the results obtained by centralized methods 

are generally poor in the dynamic environment. 

Distributed algorithms include decentralized Markov 

decision process (Dec-MDP), distributed model predictive 

control (DMPC), dynamic distributed constraint optimization 

(DDCOP), contract net (CN), auction algorithm [35]. They 

are preferred because of their simple calculation, quick 

response to dynamic events, and little computation overhead 

and good robustness and are widely used to solve complex 

task allocation problems [11]. 

C. Consensus and Conflict Resolution 

The consensus problem is to have a group of UAV reach a 

common assessment or decision based on distributed 

information and a communications protocols [31]. A 

consensus algorithm or protocol is an interaction rule that 

specifies the information exchange between an agent and all 

of its neighbors on the network [41]. It has been formulated 

as a coordinated control problem by Fax and Murray [42] 

where they considered a control law in which each system 

attempts to stabilize itself relative to its neighbors. 

IV. CONCLUSION 

In this paper a review of core issues in design of multiple 

cooperating UAV are presented. They include the principles 

of cooperative architectures and algorithms. The architectures 

are mainly multi-agent based which include formations, 

physical coupling and intentional cooperation. Algorithms 

development issues are information sharing, task assignment 

and conflict resolution. It is anticipated that the work 

presented here will elaborate critical issues in multiple UAV 

cooperation design hence provide essential knowledge to 

designers with interests in multiple vehicle cooperative 

control.  
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